Structure and tie strengths in a large-scale social network

J.-P. Onnela^{1,2}, J. Saramäki², J. Hyvönen², G. Szabó^{3,4} D. Lazer⁵, K. Kaski², J. Kertész⁶, A.-L. Barabási^{3,4}

¹ Physics Department & Saïd Business School, University of Oxford, UK
 ² Laboratory of Computational Engineering, Helsinki University of Technology, Finland
 ³ Center for Complex Networks Research, University of Notre Dame, USA
 ⁴ Dana-Farber Cancer Institute, Harvard University, USA
 ⁵ John F. Kennedy School of Government, Harvard University, USA
 ⁶ Dept. of Theoretical Physics, Budapest University of Technology and Economics, Hungary

Overview

1. Introduction to social networks

- 2. Constructing the network
- 3. Network statistics
- 4. Local structure
- 5. Global structure
- 6. Diffusion of information
- 7. Conclusion

Introduction to social networks

- Social network theory since 1930s; Physicists involved since 1990s
- Nodes _ individuals, links _ social interaction (of some type / form)
- Classics: six-degrees of separation (1960's) & strength of weak ties (1973)
- Social network paradigm in the social sciences: Social life consists of the **flow** and exchange of norms, values, ideas, and other social and cultural resources **channelled through the social network**
- Key question: Microscopic interactions _ macroscopic social systems
- Physics perspective can contribute: Network flow & statistical mechanics
- Uncovering structure and function of social networks has been severely constrained by the difficulty of mapping social relations (interactions)

Introduction to social networks

- Traditional approach:
 - Data from questionnaires; $N \approx 10^2$
 - Scope of social interactions wide
 - Strength based on recollection
- New approach:
 - Electronic records of interactions; $N \approx 10^6$
 - Scope of social interactions narrower
 - Strength based on measurement

- Mobile phone call network as a proxy for the underlying social network; Empirical study of a large scale **one-to-one weighted** social interaction network
 - Understanding of large-scale social networks (media multiplexity)
 - Foundation for social network models
 - Potential applications: epidemiology, collective behaviour

1. Introduction to social networks

- 2. Constructing the network
- 3. Network statistics
- 4. Local structure
- 5. Global structure
- 6. Diffusion of information
- 7. Conclusion

- 1. Introduction to social networks
- 2. Constructing the network
- 3. Network statistics
- 4. Local structure
- 5. Global structure
- 6. Diffusion of information
- 7. Conclusion

Constructing the network

- Data from one operator in one country, covers $\approx 20\%$ of population (p=0.2)
- Over 90% of country's population has mobile phone subscription
- Data aggregated from a period of 18 weeks (126 days)
- Records cover over 7 million <u>private</u> mobile phone subscriptions
- Focus on voice calls within the operator
- Require reciprocity of calls $(X \rightarrow Y \text{ AND } Y \rightarrow X)$ for a link
- Quantify tie strength (link weight) using (1) Aggregate call duration W_i

Network statistics

Take a look at it!

- Snowball sampling
 - Pick a node at random
- Include all nodes within a given distance in the sample
- Bulk nodes & surface nodes

Majority (~95%) are surface nodes
Partial vs. full visibility wrt. neighbours

Network statistics

Network statistics

7. Conclusion

Network statistics

• And many more (2)	network characteristic	notation	"scaling"	see p.
	degree distribution (cumulative)	$P_{>}(k)$	NA	6
	link weight distribution (cumulative)	$P_{>}(w^{N}), P_{>}(w^{D})$	NA	7,8
	node strength distribution (cumulative)	$P_{>}(s^{N}), P_{>}(s^{D})$	NA	7,8
	degree-degree correlation	$(k_{nn} k)$	$\sim k^{\alpha}, \alpha \approx 0.4$	8,9
	degree–degree correlation, w_{ij}^{γ} –weighted	$\langle k_{nn}^{N} k\rangle$		9
	degree–degree correlation, w_{ij}^{*} -weighted	$\langle k_{nn}^{\mu} k \rangle$	1 N. N	9
	strength-strength correlation	$\langle s_{nn}^{N} s^{N}\rangle$	$\sim (s^{\alpha})^{\alpha}$, see text	10
		$\langle s^D_{nn} s^D \rangle$	$\sim (s^D)^{\alpha^D}$, see text	10
	clustering spectrum	$\langle C k \rangle$	$\sim k^{-1}$	10
	weight-degree correlation.	$\langle s^N k \rangle$	$\sim k^{\alpha}$, $\alpha^N \approx 0.9$	10,11
		$\langle s^D k \rangle$	$\sim k^{\alpha^D}$, $\alpha^D \approx 0.8$	10,11
	strength product-degree product correlation	$\langle s_j^N s_j^N k_i k_j \rangle$	$\sim (k_i k_j)^{\beta^N}$, $\beta^N \approx 0.7$	11
		$\langle s_j^D s_j^D k_i k_j \rangle$	$\sim (k_i k_j)^{\beta^D}, \beta^D \approx 0.4$	11
	weight-degree product correlation	$\langle w_{ii}^N k_i k_i \rangle$	$\sim (k_i k_i)^{\gamma^N}, \gamma^D \approx -0.2$	11,12
		$(w_{i}^{D} k_{i}k_{i})$	$\sim (k_i k_i) \gamma^D$, $\gamma^N \approx -0.1$	11.12
	weight-strength product correlation	$(w^N s^Ns^N)$	$\sim (s^N s^N)^{\delta^N}, \delta^N \approx 0.5$	11.12
		(mD) D D	$\sim (s^D s^D)^{\delta^D} \delta^D \simeq 0.5$	11.12
	summin triangle intensity strength correlation	G(A)NIeN	$(a_1^N)^{(N)} = N \approx 0.5$	15.16
	average transfer menany-screngen correlation	$((\Delta) D)_{-}D)$	$(a^{D})^{a^{D}} \rightarrow P \approx 0.7$	15.16
	average triangle otherways strength correlation	$(\pi(\Delta)^N)_{\sigma^N}$	~ (**)*, ** ** 0.1	15,16
	average triangle constence screngen correlation	$\langle \bar{q}(\Delta)^D s^D \rangle$	NA	15.16
	weighted clustering strength correlation	(ČisD)	$\sim (a^D)\zeta^D$, $c^D \simeq 0.8$	10.16
	weighted constrainty secondari concentroit	(Čls ^N)	NA	10.16
	overlap-weight correlation	$(O w^N)$	NA	16-18
	country country of the second	$(O w^D)$	NA	16-18
	overlap-cumulative weight correlation	$\langle O P_c(w^N)\rangle$	NA	16-18
		$(O P_c(w^D))$	NA	16-18
	overlap-betweenness centrality correlation	$\langle O b\rangle$	NA	19,20

Local structure

- Weak ties hypothesis*: Relative overlap of two individual's friendship networks varies with the strength of their tie to one another (tie strength := time + reciprocity)
- Define *overlap* O_{ij} of edge (i,j) as the fraction of common neighbours
- Result: Average overlap increases as a function of (cumulative) link weights
- Local coupling between tie strengths and network topology, i.e. tie strength is in part driven by the structure surrounding the tie
- * M. Granovetter, The strength of weak ties, American Journal of Sociology 78, 1360 (1973).

Global structure

- Probe the global role of links of different weight (w_{ij}) and local topology (O_{ij})
- Physicists' (and children's) approach: Break to learn!
- Thresholding (percolation):
 - Order links by weight (w_{ij})
 - Remove links, one by one, based on their order
- Control parameter f is the fraction of removed links
- We can move, in either direction, between the initial connected network (*f*=0) and the set of isolated nodes (*f*=1)

Global structure

Initial connected network (f=0), small sample \Rightarrow All links are intact, i.e. the network is in its initial stage

Global structure

Decreasing weight thresholded network (f=0.8) \Rightarrow 80% of the strongest links removed, weakest 20% remain

Global structure

Increasing weight thresholded network (f=0.8) \Rightarrow 80% of the weakest links removed, strongest 20% remain

Global structure

Initial connected network (f=0), small sample \Rightarrow All links are intact, i.e. the network is in its initial stage $\int \frac{1}{\sqrt{2}} e^{-\frac{1}{\sqrt{2}}} e^{-\frac{1}{\sqrt$

Global structure Qualitative difference in the global role of weak and strong links (FSS): Phase transition when weak ties are removed first $f_c(\infty) \neq 1$ No phase transition when strong ties are removed first $f_c (\infty) = 1$ Technological and biological networks: strong ties are structurally important • Suggests a point of division between weak and strong links (f_c) • **Order parameter** R_{LCC} - Def: fraction of nodes in LCC - LCC is robust, collapses when $f \ge 0.80$ Existence of PT: • Global role Susceptibility S • Comparison (N) - Def: average cluster size (excl. LCC) • Weak vs. strong - Divergence? \Rightarrow Global role of links? red: remove weak first black: remove strong first $f_c^w(\infty) = 0.80 \pm 0.04$

Global structure

Order parameter R_{LCC} - Def: fraction of nodes in LCC - LCC is robust, collapses when $f \ge 0.80$

Susceptibility S

- Def: average cluster size (excl. LCC) - Divergence? \Rightarrow Global role of links?

Average shortest path length $\langle l_{LCC} \rangle$ - Def: number of links along shortest path - Remove weak links longer paths (!)

Average clustering coefficient $\langle C_{LCC} \rangle$ - Def: fraction of interconnected neighbours - Removing strong links decreases $\langle C \rangle$ - WL removal 'invisible' locally; cmp. R_{LCC} $S = \sum n_s s^2 / \sum n_s s; \ \widetilde{S} = \sum n_s s^2 / N; \ C_i = t_i / 2k_i (k_i - 1)$

1. Introduction to social networks

- 2. Constructing the network
- 3. Network statistics
- 4. Local structure
- 5. Global structure

6. Diffusion of information

7. Conclusion

Percolation properties

Diffusion of information

- Knowledge of information diffusion based on unweighted networks •
- Use the present network to study diffusion on a weighted network: • Does the local relationship between topology and tie strength have an effect?
- Spreading simulation: infect one node as in SI-model in epidemiology •

(1) Empirical: $p_{ij} = a w_{ij}$ (2) Reference: $p_{ii} = a\overline{w} = \text{const}$

Spreading significantly faster on the reference network •

Information gets trapped in communities in the real network

Diffusion of information

• Where do individuals get their information from?

Reference

- Transmission probability independent of link weight
- First transmissions through weak ties (Granovetter)

Empirical

- Transmission probability depends on link weight
- First transmissions through intermediate ties
- Weak ties: • access to new information
- Strong ties:
- low information transmission rate X • high information transmission rate • rarely access to new information X

• Successful searches conducted primarily through intermediate to weak ties P. S. Dodds, R. Muhamad, D. J. Watts, Science 301, 827 (2003)

 \Rightarrow "weakness of weak and strong ties"

- 1. Introduction to social networks
- 2. Constructing the network
- 3. Network statistics
- 4. Local structure
- 5. Global structure
- 6. Diffusion of information

Conclusion

Diffusion of information

Impact on overall infromation flow in the network?

- Start spreading 100 times (large red node)
- Information flows differently due to the local organizational principle (1) Empirical: information flows along a strong tie backbone (clean regions) (2) Reference: information mainly flows along the shortest paths

Conclusion

- Local coupling between network topology and tie strengths \Rightarrow Large-scale empirical verification of weak ties hypothesis
- Global role of ties Weak ties: maintain global integrity (phase transition) Strong ties: maintain local communities (no phase transition)
- First-time information diffusion occurs through ties of intermediate strength \Rightarrow "weakness of weak and strong ties"
- Implications for modelling social networks and processes unfolding on them

(1) J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész, and A.-L. Barabási. PNAS 104, 7332 (2007).

(2) J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, M. A. de Menczes, K. Kaski, A.-L. Barabási and J. Kertész, New Journal of Physics (2007). Pre-print physics/0702158.

See Science 314, 914 (2006).